Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¼­·Î ´Ù¸¥ ÇüÅÂÀÇ ÀÓÇöõÆ®ÀÇ ½Ä¸³ÅäÅ©°¡ °ñ¿¡ ¹ÌÄ¡´Â ¿­º¯È­¿¡ °üÇÑ ¿¬±¸

Analysis of thermal changes in bone by various insertion torques with different implant designs

´ëÇÑÄ¡°úº¸Ã¶ÇÐȸÁö 2011³â 49±Ç 2È£ p.168 ~ 176
±è¹ÎÈ£, ¿©Àμº, ±è¼ºÈÆ, ÇÑÁß¼®, ÀÌÀçºÀ, ¾çÀçÈ£,
¼Ò¼Ó »ó¼¼Á¤º¸
±è¹ÎÈ£ ( Kim Min-Ho ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
¿©Àμº ( Yeo In-Sung ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
±è¼ºÈÆ ( Kim Sung-Hun ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Ã¶Çб³½Ç
ÇÑÁß¼® ( Han Jung-Suk ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
ÀÌÀçºÀ ( Lee Jai-Bong ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
¾çÀçÈ£ ( Yang Jae-Ho ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç

Abstract

¿¬±¸ ¸ñÀû: ÀÓÇöõÆ® ½Ä¸³½Ã¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â ¿­º¯È­´Â ÀÓÇöõÆ®ÀÇ ½ÇÆи¦ ÃÊ·¡ÇÒ ¼ö ÀÖ´Ù. ½Ä¸³ÅäÅ©¿¡ µû¸¥ ¿­º¯È­ ¾ç»óÀ» ÆľÇÇÔÀ¸·Î ÀÓÇöõÆ®ÀÇ ÇüÅ¿¡ µû¸¥ Â÷ÀÌÁ¡°ú ÀûÀýÇÑ ½Ä¸³ÅäÅ©°¡ ¾î¶² °ÍÀÎÁö ÆľÇÇÏ°íÀÚ ÇÑ´Ù.

¿¬±¸ Àç·á ¹× ¹æ¹ý:½ÇÇèÀç·á·Î´Â µÎ²² 15 - 20 mmÀÇ ¼Ò °ß°©°ñÀ» °¡·Î 35 mm, ¼¼·Î 40 - 50 mm Å©±â°¡ µÇµµ·Ï °ñÆíÀ¸·Î ÀÚ¸£°í ÀÌÁß¿¡ ÇÇÁú°ñÀÇ µÎ²²°¡ 2 - 3 mm µÇ´Â Ç¥º»À» ¼±Á¤ÇÑ ÈÄ Ç¥º»ÀÇ ¹ÝÀ» 36.5¡É ¼öÁ¶¿¡ ½Ç¿Â 25¡É¿¡ ³ëÃâ ½ÃÄÑ ³»ºÎ ¿Âµµ´Â Æò±Õ 36.5¡É, Ç¥¸é¿Âµµ 28¡É°¡ µÇµµ·Ï ¼³°èÇÏ¿´´Ù. 4.5 ¡¿ 10 mmÀÇ ¿ÜºÎÀ°°¢À» °¡Áö´Â Branemark ÇüÅÂÀÇ ÀÓÇöõÆ®¿Í 4.8 ¡¿ 10 mmÀÇ Microthread ÇüŸ¦ Áö´Ï´Â ³»ºÎ¿¬°á ÇüÅÂÀÇ ÀÓÇöõÆ®¸¦ °úµµÇÑ ½Ä¸³ÅäÅ©·Î ½Ä¸³ÇÏ°í ¿Âµµ ÃøÁ¤Àº °èÃøÁ¡¿¡¼­ 0.2 mm À̳»¿¡ ¿­Àü´ë¸¦ À§Ä¡½ÃÄÑ ±â·ÏÇÏ¿´´Ù. »ïÂ÷¿øÀ¯ÇÑ¿ä¼Ò ºÐ¼®Àº °ñÀÇ ÇüŸ¦ °¡·Î 4 cm, ¼¼·Î 4 cm, ³ôÀÌ 2 cmÀÇ Á÷À°¸éü·Î °¡Á¤ÇÏ°í, Á÷À°¸éü À­¸é¿¡¼­ 2 mm±îÁö¸¦ ÇÇÁú°ñ, ±× ¾Æ·§ºÎºÐÀ» Çظé°ñÀ̶ó°í °¡Á¤ÇÏ¿´´Ù. ¸¶Âû¿­Àº ¸Å½ÄÀÌ Á¾·áµÈ »óȲ¿¡¼­ °ñ¿¡ ³²´Â cavity ¸ð¾çÀ» ±âÃÊ·Î °æ°èÁ¶°ÇÀ» ºÎ¿©ÇÏ¿´´Ù. CAD ÇÁ·Î±×·¥ÀÎ SolidWorks ¼ÒÇÁÆ®¿þ¾î¸¦ ÀÌ¿ëÇÏ¿´°í, À̸¦ À¯ÇÑ¿ä¼Ò ±¸Á¶Çؼ®¿ë ÇÁ·Î±×·¥ÀÎ Abaqus 6.9-1·Î ºÒ·¯µé¿© Çؼ®ÇÏ¿´´Ù.

°á°ú ¹× °á·Ð: In vitro½ÇÇè¿¡¼­ Microthread typeÀÇ ÀÓÇöõÆ®°¡ »ó´ëÀûÀ¸·Î ´õ ³ôÀº ÃÖ°íÁ¡ ¿Âµµ¸¦ º¸¿©ÁÖ°í ÀÖÀ¸¸ç ÀÌ´Â ÀÓÇöõÆ®ÀÇ ÇüÅ¿¡ µû¸¥ ¸¶Âû¿­ ¹ß»ýÀÌ ÁÖ¿ä ¿øÀÎÀ¸·Î º¸ÀδÙ. À¯ÇÑ¿ä¼ÒºÐ¼®À» ÅëÇØ »ìÆ캻 °á°ú Bra?nemark ÇüÅÂÀÇ ÀÓÇöõÆ®ÀÇ °æ¿ì 50 NcmÀ̻󿡼­ Microthread¸¦ °¡Áö´Â ÇüÅÂÀÇ °æ¿ì¿¡´Â 35 NcmÀ̻󿡼­ Eriksson µîÀÌ º¸°íÇÑ ¿ªÄ¡¸¦ ÃÊ°úÇÏ´Â ¿Âµµ°¡ ¹ß»ýÇÏ¿´´Ù. À̸¦ ÅëÇØ º¼ ¶§ Microthread type ÀÌ ½Ä¸³ÅäÅ©¿¡ µû¸¥ ¿Âµµ Áõ°¡°¡ ´õ ¹Î°¨ÇÔÀ» ¾Ë ¼ö ÀÖ´Ù. ½ÇÇè°á°ú¸¦ ÅëÇؼ­ ¼­·Î ´Ù¸¥ ÇüÅÂÀÇ ÀÓÇöõÆ® ½Ä¸³½Ã¿¡ ÀÓÇöõÆ®ÀÇ ÇüÅ¿¡ µû¶ó ÀûÀýÇÑ »ðÀÔÅäÅ©¸¦ ºÎ¿©ÇÏ´Â °ÍÀÌ ¼º°øÀûÀÎ ÀÓÇöõÆ® ½Ã¼ú¿¡ Áß¿äÇÑ ¿ä¼Ò Áß¿¡ ÇϳªÀÓÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. ƯÈ÷ Microthread¸¦ °®´Â ÀÓÇöõÆ® ÇüÅ´ ³ôÀº Ãʱâ°íÁ¤¼ºÀ» ¾òÀ» ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Â ¹Ý¸é °úµµÇÑ ½Ä¸³ ÅäÅ©·Î ÀÎÇÑ ¿­ ¼Õ»ó °¡´É¼ºÀ» °¡Áú ¼ö ÀÖÀ¸¹Ç·Î °ñ·®°ú °ñÁúÀÇ ½ÅÁßÇÑ Æò°¡¿Í ÀûÀýÇÑ ¼ö¼ú±â¹ýÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î »ý°¢µÈ´Ù.

PURPOSE: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs.

MATERIALS AND METHODS: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of 36.5¡É and the other half was exposed to ambient temperature of 25¡É, so that the inner and surface temperatures reached 36.5¡É and 28¡É, respectively. Two types of implants (4.5 ¡¿ 10 mm Branemark type, 4.8 ¡¿10 mm Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of 4 cm ¡¿4 cm ¡¿ 2 cm and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1.

RESULTS: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Branemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Bra?nemark type) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques.

CONCLUSION: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.

Å°¿öµå

À¯ÇÑ¿ä¼ÒºÐ¼®; ¸¶Âû¿­; ÀÓÇöõÆ®ÀÇ Á÷°æ; ½Ä¸³ÅäÅ©; ¿­º¯È­
Finite element method; Frictional heat; Implant diameter; Insertion torque; Thermal change

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed